oric @

- ELECT®
AD-A249 324 S i meca
AU W R

Automating the Coordination of
Interprocessor Communication

Jingke Li and Marina Chen

YALEU/DCS/TR-829
October, 1990

T DISTRIBUTION STATEMENT A
Approvad for pubiic rolease;
Distribution UnBmited

-10007
LU

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

0o 4 20 058

Statement A per telecon
Dr. Richard Lau ONR/Code 1111
Arlington, VA 22217-5000

NWW 5/1/92

Yale University

Accessio:_ﬂ; z

Dist

R

NTIS GREM [;
: o 2 SO IR I U []]
. anaounsed f
- Justifieatten 3
Py
'_Distributien/

Avquab!lity Codes

1AV!11 a..d/or
Special

Department of Computer Science

Automating the Coordination of
Interprocessor Communication

Jingke Li and Marina Chen

YALEU/DCS/TR-829
October, 1990

This work has been supported in part by the Office of Naval Research under

Contract N00014-89-J-1906, N00014-90-J-1987.

Automating the Coordination of

Interprocessor Communication

October 29, 1990

Jingke Li Marina Chen
Department of Computer Science Department of Computer Science
Portland State University Yale University
P.O.Box 751 P.O.Box 2158, Yale Station
Portland, OR 97207 New Haven, CT 06520
Tel. (503) 725-4053 Tel. (203) 432-4099
Email: 1i@cs.pdx.edu Email: chen-marina@cs.yale.edu

To appear in "Programming Languages and Compilers for Parallel Computing,”
Research Monographs in Parallel and Distributed Computing series, MIT Press,
Gelernter et al., eds, 1990.

Contents

1 Introduction

2 Context
2.1 Shared-Memory Programs,
2.2 Partition Strategies L. e
2.2 Communication Primitives
2.4 Selecting Communication Routines
2.5 Message Aggregation e e

3 Synchronizing Communication Primitives

3.1 Synchronizing Group A Primitives.
3.2 Synchronizing Group B Primitives.
3.3 Computing the Inverse of a Reference Pattern

4 Scheduling Communication Primitives

4.1 Computation Segments L e e
4.2 Communication Segment Lo Lo Lo
4.3 Scheduling Communication Segments

5 Correctness of Communication Synthesis

6 Concluding Remark

< 3 o O

13
13
14
15

17
17
18
19

21

22

Abstract

This paper presents methods for ensuring correct synchronization and
scheduling of message-passing in the context of compiling shared-memory
programs onto distributed-memory machines. We show that from a given
source loop nest, there corresponds a mazimum granularity where the com-
putation can go on without the need for any communication, and a commu-
nication window within which a communication command must occur and
can occur anywhere legally. Better overall efficiency can then be achieved by
playing with the granularity parameter using more frequent communication
than that for the maximum granularity case.

1 Introduction

In compiling a shared-memory program to a distributed-memory target machine, explicit
communication commands to achieve interprocessor data transfer must be generated from
the references in the source program. The generation process has three parts to it: first,
selecting appropriate communication primitives (the synthesis part), placing the calls to
these primitives in appropriate location in the target program text to ensure correct state-
ment sequencing and scope (scheduling), and setting up correct conditions for invoking
these primitives (synchronization). This paper addresses the latter two issues, referred to
together as the issues of coordinating interprocessor communication. We present a solu-
tion which ensures that the data dependency of the original shared-memory program is

ro==-< 3
Control Structure Front-end \ Source !
Synthesis N Processing | ! Program!
: Leeeen 4
r=-- "' i
| Intermediate!
i Program

T

Communication Synthesis: m—m———
Analysis of Reference Patterns, _y Target !
Scheduling and Synchronization, "\ Program!
Partition and Aggregation. Lmegmmdd

Abstract Machine
Communication Metric

@ysical MachinD

Figure 1: A High Level View of the Communication Synthesis Module

A ggregate Communication
Routines

preserved in the target message-passing program. Two important notions are developed
for coordination: the mazimum granularity of a loop nest where the computation can go
on without the need for any communication, and a communication window within which
a communication command must occur and can occur anywhere legally.

First we provide some background for our work on coordination of interprocessor com-
munication.

Crystal Approach The Crystal approach to programming parallel computers is to begin
with a machine-independent, high-level problem specification. A sequence of transforma-
tions, either suggested by the programmer or generated by the compiler, are then applied
to this specification. These transformations are tuned for each particular machine archi-
tecture so that efficient target code with explicit communication can be generated. Our
approach to compilation consists of the following components:

1. Control structure synthesis: deriving a parallel control structure from a functional
specification or a sequential program. This component as shown in Figure 1 generates
an intermediate program in which parallel schedule and flow of control are made
explicit, but the references are still based on aglobal shared memory.

2. Data distribution: mapping the program data structure to a virtual network and
then embedding the virtual network into the physical network. Specifically, we con-
sider virtual networks which are multi-dimensional grids and use the standard Gray
code embedding of a grid into a hypercube. The mapping from data structures to the
virtual network consists of (1) partitioning the program data structures into appropri-
ate grain sizes in such a way that communication overhead is reduced and workload
is balanced, and (2) determining the relative locations of data structures so as to
minimize interprocessor communication (we call this process domain alignment).

3. Communication synthesis: translating all references to data structures to either local
memory accesses or interprocessor communication. The reference patterns of the in-
termediate program are matched with a library of aggregate communication routines
and those which minimize network congestion and overhead are chosen. Once such
calls to communication routines are determined, they need to appear in the pro-
gram text under the correct conditions, statement sequence, and scope. This issue
of coordinating interprocessor communication is the topic of this paper.

Issues in Coordinating Interprocessor Communication We use the following ex-
ample to illustrate some issues arising in automating the coordination of interprocessor
communication. The following loop nest contains a segment of a shared-memory program
with explicit parallel control using forall loops:

for (¢ : [0..n])
forall ((Z,7) : {1..n] x [1..n])
a(s,5,t)=if(t >1)and (: > j) = a(i+1,7-2,t—1);
else — i + j;

The program is written in a single-assignment, C-like notation which will be described
in more detail in Section 2. The array a has been expanded with an extra dimension so as
to allow the single assignment form of statement, however, its implementation will actually
be a two-dimensional array using side-effecting assignment statements.

Suppose we distribute the forall loops over the two-dimensional domain to a two-
dimensional network of processors. Let each processor be denoted by a pair (z,y), and
let processor (z,y) be responsible for a range of iterations specified by the intervals
Di = [Ii(z,y)..I.(z,y)] and D, = [Ji(z,y)..Ju(z,y)]. The following is the program for
each processor (z,y) which is assigned a portion of array a:

Program for processor (z,y) :
for (¢ : [0..n])
forall ((1,]) : Dy % Dg)
if (t> 1) && (i > j)
a[¢](j]{t] = afi + 1[5 — 2(t - 1];
else a[i)[j][t] = ¢ + j;

3

For any given iteration t : [0..n], the reference pattern of the program indicates that
for every element (7, j) in the domain [1..n] x [1..n], the value of a needs to be shifted to
another element which is offset by (1, —2) steps from itself.

Recognizing such a pattern symbolically, we can match these references with the fol-
lowing send and receive commands, and the target message passing program will look like

Program for processor (z,y) :
for (¢ : [0..n]){
forall ({(¢,7) on boundary of D; x D)) {
f(t>1)&& (i-1)>(+2)
send((—l, 2)"1);
if (t>1) && (2> j)
receive((1, —2), a);
}
forall ((z,7) : D1 x D,)
if (t>1)&& (i > j)
ali]l7][t] = alt + 1][j — 2)[t - 1];
else a[t][j][t] = ¢ + 7;
}

As we see above, the destination addresses of the send and receive commands are the
inverses (to be defined later) of each other, and so are the predicates of the statements in
which they appear. Since such information is not explicit in the shared-memory program,
it needs to be derived symbolically. Also, there are many possible choices for when a
communication can occur; for instance, it can occur immediately before the statement
where the transferred data are to be used or it can occur much earlier. In addition, the
actual target code generated will be more complex than what is shown above due to the
need to aggregate many individual send commands into a single send command to avoid
overhead involved in each invocation of a communication command. There are alternative
ways to aggregate which can have significant performance impact.

Related Work The problem of automatically generating communication for distributed-
memory machines from program references is addressed by several research projects (1, 8,
12, 13, 14, 15, 17] In terms of coordinating interprocessor communication, most of the
proposed ideas use run-time analysis to solve the synchronization problem, which works as
follows. A processor sends out a request whenever there is a need for a piece of data which
is not available locally, and the request will interrupt the source processor. In this setting,
scheduling is by default (communication occurs whenever there is a request). Rogers and
Pingali [14] also describe a compile-time resolution in which processors are assigned to
every computation node in the abstract-syntax tree of the source program at compilc-time
so that the source and destination of each message can be determined. The scheduling
problem is not specifically discussed in that paper.

4

2 Context

To make this paper self-contained, we first describe the framework for generating commu-
nication commands from source program references. We introduce concepts and notations
that are pertinent to the problems addressed in this paper. We first define the form of the
input programs, called shared-memory programs. Then we introduce the notions and rep-
resentations of indez domains and reference patterns, which provide essential information
regarding the latent parallelism and communication in a program. Next, we describe a
set of run-time communication routines, which will be used by the compiler to implement
interprocessor communication. We also describe standard data partition strategies since
data layout affects the communication to be generated. Finally, we describe the method
for selecting calls to run-time communication routines based on analyzing the reference
patterns appearing in the shared-memory program.

2.1 Shared-Memory Programs

The input program to the communication synthesis module shown in Figure 1 is given
in a C-like notation augmented with parallel control structures to be described below.
Suitable pre-processing can be applied to programs written in exiting parallel shared-
memory languages or sequential languages augmented with parallel control structures (see
[16] for FORTRAN extensions) to obtain this form (with un-essential syntactic variations).
An example shared-memory program is given in Figure 2.

We have the following assumptions on the form shared-memory programs:

Single assignment: Each array element can be assigned to only once. However, an array
can appear on the left-hand side of many assignment statements (so long as different array
elements are assigned to each time).

Left-hand side subscripts are index variables: Array subscript expressions on the left-hand
side of an assignment statement must be index variables. For instance, the following
statement

a(i,j—1)=b(1+2,7)
should be written as

a(i,7) =b(i +2,7+1).

Arrays are aligned: Within each loop nest, arrays are aligned to have a common inder
domain (see [11] for a detailed discussion on domain alignment). The boundaries of each
individual array are appropriately adjusted according to the alignment. In the example
shown in Figure 2, the index domain of the loop nest is the Cartesian product of intervals
[1..n] x [1..n] x [0..n].

We use the notation (¢ : [0..n]) to denote a for or forall loop indexed by t wi*h lower
bound 0 and upper bound n, and the notation of Cartesian product of intervals as in
((4,7) : [0..n] x [0..n}) for doubly nested loops. A for loop is just a conventional sequential

for (¢ : [0..n]) {
forall ((1,7) : [1..n] x [1..n])
b(i,j,t) =if (j=1t) —
\ +{a(i,z,t - 1) |1 <z <n};
else — 1;
forall ((7,7) : [1..n] x [1..n])
a(i,j,t) =if (t =0} > 0;
else if (1 = b(0,t,t)) — a(i,j,t —1);
else — b(z,t,1);

Figure 2: A Shared-Memory Program

loop. A forall is a parallel loop whose iterations can be executed in parallel with the
assumption that proper synchronization is enforced. For example, given the following loop

forall (: € D)
for (; € D,)
af{i,j) = a(2,j — 1),

the iterations of the forall loop can be executed in parallel, however, they have to be
synchronized by the iterations of the for loop, i.e. no iteration of the forall loop should go
on to the j + 1th iteration of the for loop, unless all the iterations finish the jth iteration.

General data structures using pointers as in C are not allowed in the shared-memory
program defined above. Notice also that arrays in a shared-memory program are expanded
with extra dimensions so as to allow the single assignment form of statements. In the code
generation stage, however, the extra dimensions of an array will be collapsed, and the
array restored to its original shape.

Reference Patterns For each pair of array references appearing on the two sides of an
assignment statement in a loop,

for (¢1: Dy,...,1n 2 Dy)

a(il,...,in)zif'y —*---b(ﬁ,...,r,,)---;
else — .-

the symbolic form (as a quoted string of characters)
‘a(iy, ..., in) — b(T1y- .., Tn) 1 "

is called a reference pattern, where the formals (i1,...,1.) are quantified over the index
domain D; x - -+ x Dy, and 7 is the guard of the conditional branch that b(7y,...,) is in.

6

Pyl Py| | P
P P, o| Al P3| P2
” 1 PP P Py
Po| P | P3| P,
p p ¥ P1 [P PRl A
: * P Po| P | P
(a) Strip (b) Block (c) Interleaving

Figure 3: Standard Partition Strategies

The following reference patterns can be derived from the program in Figure 2,

Py : "b(i,j,t) «a(t,z,t—1):j=tand 1 < z < n,
Py : a(i,5,t) « b(0,t,t): t # 0",

Ps: a(i,j,t) «e(i,j,t = 1): t #0and i = b(0,¢,1)",
Py : "a(,,1) « b(z,t,t) 1 t # 0 and i # b(0,t,t)"

A reference pattern represents a collection of data dependencies. We emphasize this
aggregate form rather than each instance of a reference because the key for generating
efficient target message-passing programs is to extract correlated references and issue a
single aggregate communication routine that is optimized both for the pattern and the
target architecture.

2.2 Partition Strategies

Clearly, distribution of arrays affects what data need to be passed by messages between
processors. Generally speaking, optimizing for data layout and minimizing communication
overhead are two inter-dependent activities. We use a straightforward approach here by
considering a few often-used, standard data layouts for programs with regular data struc-
ture, called standard partition strategies, which include block partition, strip partition, and
interleaving partition (Figure 3). In each strategy, an index domain is partitioned into
more or less equal-size sub-domains. Strategies differ in the resulting shape and size (the
granularity) of the partitioned sub-domains. In the following, we call a dimension of an
index domain spatial if the subdomain along that dimension is mapped to different pro-
cessors; otherwise we call it temporal. In Figure 3, the horizontal dimension of the index
domain is partitioned in all of the four cases, while the vertical dimension is partitioned
only in the second and fourth cases.

Partitioned Shared-Memory Program Applying a partition strategy to a shared-
memory program results in a partitioned shared-memory program. For example, suppose
that the forall loops in the program in Figure 2 are partitioned over a two-dimensional net-

work of processors such that processor (z,y) is responsible for a sub-domain [I;(z,y).. J,(z, y)] x

[Ji(z,y)..Ju(z,y)] of (2,7). Figure 4 shows the partitioned version of the program.

for (¢ :[0..n]) {

forall ((¢,7) : [Ii(z,y).-Iu(z,y)] x [Ji(z,y)..-Ju(z,9)])
b(i,7,t) =if (j =t) —
\ + {a(s,z,t — 1) | 1 < z < n};
else — 1;
forall ((2,7) : [Ii(z,y).. Tu(z,y)] x [Ji(z,y)--Tu(z,9)))
a(z,5,t) =if (t=0) — 0;
else if (1 = 5(0,¢,t)) — a(¢,j,t — 1);
else — b(7,t,1);

Figure 4: A Partitioned Shared-Memory Program

Although the partitioned program is to be executed sequentially by each individual
processor, we still use forall to represent sections of parallel loops derived from a forall loop.
The reason here is that knowing the absence of data dependence of a forall loop helps in
scheduling communication in such a way that better performance can be obtained.

Canonical Form of Loop Nests For reasons which will become clear later, we want
to perform loop interchange (see [16] for a survey on this topic) on a partitioned shared-
memory program to obtain a canonical form where all for loops appear outside of forall
loops. Note that there is a top-level forall loop that ranges over the processors and is
invisible from each processor’s standpoint. The forall loops in a canonical form reveal the
maximum granularity between synchronization points between iterations.

The validity of the interchange of two adjacent for and forall loops can be easily shown
for the partitioned shared-memory program as defined (due to the single assignment form
of the array assignment statements). Suppose that we are given a loop nest and its inter-
changed version, as shown below:

for (2 : D) forall (j : D,)
forall (5 : D,) for (i : Dy)
S(,7) 5(1,5);

Consider two arbitrary instances of the loop body, S(i;,71) and S(i,,j2), where #; < i,.
In the first nest, S(i;,71) will be executed first, since ¢ is the outer loop. In the second
nest, the same is also true, since the for loop appears in every iteration of the forall loop,
and it forces synchronization between the iterations. For iwo instances with the same ¢
value, 5(¢,j;) and S(i,j2), the execution order does not matter, since there is no data
dependence between them.

Spatial Reference Patterns As described above, a given partition of the index domain
of a loop nest also separates the domain coordinates into two kinds: spatial and temporal.
Clearly, for the purpose of determining the form of interprocessor communication, it is
sufficient to consider only the spatial part of a reference pattern (called a spatial reference
pattern). Using the program and partition strategy in Figure 4 as an example, we can
derive the following spatial reference patterns:

‘a@(i,z) = (i,7):j=tand 1 <z < n',
Q(0,t) = (i,7) : t # 0,

a@(i,7) = (¢,7) : t # 0 and i = b(0,1,1)’,
Q(i,t) = (,7) : t # 0 and ¢ # b(0,¢,¢)"

Compared with the reference patterns above, we see that different notations are used:
in a reference pattern, we use b(z) « a(y) to denote that a(y) is needed to compute b(z).
By contrast, in a spatial reference pattern, we use a@y’ = z’, where ' and y' contain only
the spatial coordinates to denote that the element of array « in spatial location y’ needs
to be sent to spatial location z’.

For convenience and in situations where there is no confusion, we will simply call the
spatial reference pattern a reference pattern in the rest of this paper.

2.3 Communication Primitives

We define an abstract distributed-memory machine to which shared-memory programs will
be compiled. The abstract machine will then be embedded into the target machine. The
abstract machine is configured as an n-dimensional grid of size Ny x - -- x N,, and modeled
as an index domain D = {1.N;] X - -+ x [1..N,].

We select a set of aggregate communication routines! defined over D as primitives,
as shown in Tables 1 and 2. Let B denote the message size, N the number of virtual
processors modeled by the index domain D, and N, the number of processors along the
pth dimension of the domain. We also use bold-face letters i, s, d as shorthand for index
tuples (21,%2,...,%n), (81,52,...,84), (d1,d2,...,d,). In Table 2, l; and I, denote lists of
indices (i1,...,1p-1) and (¢p41,- - -,in), respectively.

Primitives in Table 1 are called general primitives. Those in Table 2 are called simple
primitives. Each simple primitive describes collective communication which is confined in
a single dimension (denoted by index p) of the multi-dimensional grid of the abstract ma-
chine. Each simple primitive has a corresponding general primitive, but its data movement
is constrained. Tables 1 and 2 can be extended to include more primitives, such as gather,
scatter, and shuffle-exchange.

called collective communication routines by Fox et al.[5], and Johnsson and Hol[6, 7]. They have
developed a collection of efficient collective communication routines for hypercube machines, and have
shown that programs using these routines are more efficient than those using asynchronous message passing
(i.e. individual send and receive pairs) in many scientific and engineering applications.

| Primitive | Pattern | Cost |

One-All-Broadcast(D, s, a) a@s=j' O(Blog |N|)
All-One-Reduce(D, d, a, ®) Ta@i=>d' O(Blog [N])
Ali-All-Broadcast(D, a) a@i= O(B|N})
Single-Send-Receive(D,s,d,a) | Ta@s = d' O(B)
Uniform-Shift(D, c, a) a@i=i+c' | O(Blog|N}|)
Affine-Transform(D, M, ¢, a) a@i= Mi+c'| O(Blog|NJ|)

Table 1: General Communication Primitives over Domain D and Their Costs

Wrimitive 1Pattern l Cost —J
Spread(D, p, s, a) aQ(l, s, ;) = (Ih,1,1)" O(Blog N,
Reduce(D,p,d,a,®) |'a@(ly,1,13) = (h,d,1;) O(Blog | N,
Multi-Spread(D, p,a) | 'a@(ly,5,5) = (5, L) | OBV
Copy(D, p, s,d, a) 'a@(ly, s,15) = (h,d,15)’ O(B)
Shift(D, p,c,a) 'a@(l),1,0) = (h,i+c,l2)' [O(Blog |N,])

g) g

Table 2: Simple Communication Primitives over Domain D and Their Costs

These communication primitives can be implemented as part of a run-time system on
a specific target machine. Each primitive uses a routing algorithm that takes advantage
of its particular pattern of communication, and is carefully tuned for performance for each
specific target machine. From a compiler’s point of view, each communication primitive
has a unique pattern characteristic that the compiler can identify symbolically, and issue a
call to this primitive when a match with a spatial reference pattern is found. Note that a
composition of these primitives can generate many more complex communication patterns.
Thus a complex spatial reference pattern may be decomposed to match a composition of
communication primitives,

Communication Patterns The data movement of each communication primitive is
described by a communication pattern

‘a@(0y,...,0,) = (61,...,6,) 1 7"

It is interpreted as follows: Let (i1,...,1,) range over index domain D. Variables o, and 4,
where 1 < p < n are expressions of indices #;,...,1,, and 7 is a boolean predicate defined
over domain D.

The communication pattern represents the collection of data movements that bring
data pointed to by a from (a1,...,0,) to (é1,...,8,) for all the elements in D where v is
true,

10

Tuple (01,...,04,) is called the source expression, and (4;,...,68,) the destination ex-
pression. There are two special forms of a communication pattern. In the sender’s form,
the source expression consists of the formals (4y,...,4,) ranging over domain D. In the
receiver’s form, the destination expression consists of the formals (74,...,%,):

Sender’s form: "a@(zy,...,1,) = (83,.--,6.) : 7'

Receiver’s form: 'a@(a7,...,00) = (t1,...,%n) 1 7"~
Tuples (o01,...,0,) and (6], ...,6,) are related in the following way. Suppose we can write
the source and destination expressions as

(8,....8) = Tu(iy, ... in)

(0’;,. ..,0’;) = T2(i],-..,in)

where Ty and T, are well-defined functions. Then T} and T2 must be inverses of each other.

Both of the special forms are needed in synchronizing some of our communication
primitives (this point will be elaborated later). When (o1,...,0%) and (8},...,6)) are
linear expressions of the indices, is is possible to determine symbolically the sender’s and
receiver’s forms. But in general a compiler would not be able to do so. In case (61,...,6.) is
not computable by the compiler, we allow the user to specify it via the communication form
construct in which the functions T and T, are specified and used in references whenever
needed.

2.4 Selecting Communication Routines

We have developed an algorithm for matching reference patterns with communication
primitives10]. The algorithm applies to the reference patterns of a shared-memory pro-
gram together with a partition strategy selected a priori, and generates communication
primitives that implement the data movement of the reference patterns. The algorithm
works as follows. It first identifies the symbolic characteristic of the reference pattern, e.g.
decides whether the data is to be moved from a single point in the domain or from multiple
points. It then searches through the list of communication primitives for a matching one.
The search is conducted in such a way that if there are multiple matching primitives, the
most economical one (based on a communication metric) will be encountered first and
will hence be selected. In the case where no matching primitive can be found, the algo-
rithm will break the reference pattern into simpler sub-patterns, and work on each of them
recursively. There are many interesting issues in the matching process, such as how to
optimize the breakdown of a complex pattern, and how to define a communication metric.
Interested readers are referred to (10].

Forced Communication One important issue, however, needs to be pointed out here.
The communication routines discussed in Section 2.3 are all defined over regular index
domains. By regular, we mean that a domain is either an interval or a Cartesian product
of intervals. But reference patterns of a partitioned shared-memory program may have

11

associated predicates, which means the required data movement may only occur in a
selected part of a regular domain. For example, consider the following reference pattern

0@(2,3) = (i,7): 1> §,

defined over a two-dimensional spatial domain D. The required data movement is confined
in a triangular sub-domain of D, specified by the predicate : > j. As far as matching
communication routines are concerned, such predicates are ignored, i.e., those processors
which do not need data are forced to participate in the aggregate communication. Thus
the above reference pattern will be matched with the communication primitive

One-All-Broadcast(D, (2, 3), a).

As a result, some processors will be getting data they do not need. In the implementa-
tion, these extraneous data are discarded as soon as they arrive at the processor in order
to free up the buffer space of the processor.

The matching algorithm generates only calls to communication primitives. The issue of
where and under what conditions these primitives should be invoked in the target program
is not addressed. The remainder of this paper is devoted to these issues.

2.5 Message Aggregation

In most cases, a sub-domain of elements will be mapped to each processor as the result
of partitioning an index domain. Due to such partitioning, the actual code for commu-
nication would be more complicated than what is shown above. For instance, suppose
in the above example the index domain D is partitioned over a two-dimensional net-
work of processors, such that a processor (z,y) is responsible for a sub-domain E =
[i(z,y)..-L(z,y)] x [Ji(z,y).-Ju(z,y)]. The parameters to the communication routine must
contain this domain information, in addition to the information related to data allocation
within a processor and how the abstract machine is embedded in the physical network.
For instance, the indices (2,3) must be translated to the node address of the processor
network. The pointer to the data, in some cases, is to a local buffer instead of the array
itself. (In general, there are also other housekeeping chores such as loading and unloading
buffers, discarding unwanted data, etc.) Thus the actual code for the above example would
be of the form

(pre-comm statements);
One-All-Broadcast(E, idx_to_pid(2,3), BU F.a);
(post-comm statements);

In the rest of this paper, to keep the presentation of the key ideas clear, aggregations are
not shown explicitly in the target program with communication calls.

12

3 Synchronizing Communication Primitives

For the purpose of discussing message synchronization, communication primitives can be
classified into two groups: Group A consists of primitives that are implemented by pairs of
send and receive commands, such as Copy, Shift, and Single-Send-Receive. To implement a
primitive in this group both the sender’s and the receiver’s forms of a reference pattern are
needed. The synchronization issue for such a primitive is to make sure that the parameters
to the send and receive commands are correctly set up so that they are matched one-to-
one when the primitive is invoked. Group B consists of primitives that are implemented
by building message combining trees among a pre-defined set of processors (such as a
row or a column), for example Spread, Reduce, One-All-Broadcast and All-All-Broadcast.
The synchronization issue for a Group B primitive is to make sure that the primitive is
invoked under the same condition on all the participating processors, so that they will
all reach whatever communication commands that implement the primitive. The actual
time a processor reaches the communication commands however, may differ from processor
to processor on an asynchronous multiprocessor like the iPSC/2, since there is no global
clock. We illustrate each case with examples.

3.1 Synchronizing Group A Primitives

For a Group A primitive, the critical issue is to derive both the sender’s form and the
receiver’s form of the communication pattern corresponding to the communication prim-
itive. Due to our selection, every primitive in Group A corresponds to a communication
pattern that can be symbolically transformed into both sender’s and receiver’s forms by a
compiler. We show the synchronization process through an example.

Example Given the following shared-memory program,
for (¢ : [0..n])
forall ((¢,7) : [1..n] x {1..n})
a(i,j,t)=if (t>1) = b(i+ 1,5 ~2,1);
else — a(e,7,t — 1);
One spatial reference pattern derived is
@i+ 1,7 -2)= (i,7): ¢t > 1),
and is matched with a Uniform-Shift(E,(~1,2),b), where E = [1..n] X [1..n]. The target

program would look like

Program for processor (z,y) :
for (¢ : [0..n]) {
if (t>1)
Uniform-Shift(E, (-1, 2), b);

13

forall ((zaJ) : [Il(x’ y)“Iu(xa y)] X [Jl(x’ y)"']u(m’ y)])
if (t > 1)
ali](j] = bz + 1][j - 2];
}

The aggregate communication routine Uniform-Shift(E,(—1,2),b) is actually imple-
mented by the following pair of send and receive commands? in every processor partici-
pating in the aggregate communication.

send((-1,2),d);
receive((1, —2), b).

Notice that the send statement is derived from the sender’s form of the reference pattern
while the receive statement is derived from the receiver’s form. Since the source program
contains the receiver’s form already, the compiler only needs to derive the sender’s form

Q)= (E-1,7+2):t> 1

The derivation involves a matrix inversion. Under the condition that the matrix is full
rank (which is met by all Uniform-Shift cases), the inversion can be performed symbolically,
and can be derived automatically.

3.2 Synchronizing Group B Primitives

The implementation of a Group B primitive relies on building dynamic broadcasting (or
reduction) trees among a pre-defined set of processors. Take one-all-broadcast as an exam-
ple. In the first step, the processor which holds the source data sends the data to one of
its neighbors; in the second step, the two processors send the data to two new neighboring
processors; in the third step, four processors send to another four processors; and so on. If
there are n processors, the broadcasting can be done in [logn] steps. Efficient algorithms
for synchronizing and coordinating messages to implement a broadcasting or a reduction
on hypercube machines have been developed (e.g. {6, 7]). The implementation of a Group
B routine assumes a set of participating processors specified by domain parameter D and
uses a pre-determined structure on these processors to accomplish the communication.

As we mentioned in Section 2.4, certain predicates in a reference pattern are ignored
in the process of matching communication routines. The major issue in synchronizing
group B communication routines is to determine exactly the type of predicates that should
be ignored, i.e. the domain parameter D contains all the participating processors. For
each and every one of such participating processors, whether forced or not, a call to the
communication routine must be issued.

A Boolean predicate P of a reference pattern is said to be space-invariant with respect
to a domain partition strategy if the value of P is invariant with respect to the values of

2ignoring the issues of the address translation and message aggregation for the moment.

14

the spatial indices, otherwise, it is said to be space-variant. For example, suppose indices
(4,4,t) are defined over domain D; x D; x D; where .J; and D, are partitioned. Then
predicate i > j is space-variant since for different values of ¢ and j, ¢ > j can have different
values. On the other hand, predicate t > 1 is a space-invariant predicate.

When a space-invariant predicate is in conjunction with a space-variant predicate, as
in (t > 1) and (¢ > j), it is lifted outside of the call to the communication routine while the
space-variant predicate is ignored. Since the space-invariant predicate will evaluate to the
same value for all participating processors, all, or none, of the processors will participate
in the communication, as shown in the following example:

Example From the shared-memory program

for (¢ : [0..n])
forall ((¢,7) : [1..n] x [1..n])
a(i,j,t) =if (¢ > 1) and (i > j) — b3,4,t);
else — a(i,5,t—1);
the compiler derives a spatial reference pattern

'@(3,7) = (4,j):t>1andi> j,

which is then matched with a Spread(E, 1,3,b), where E = [1..n] x [1..n], by ignoring the
predicate ¢ > j. The corresponding target code looks like

Program for processor (z,y) :
for (¢t : [0..n]) {
if (t>1){
Spread(F, 1,3, b);
(discard data if forced);
}
forall ((4,7) : [I(z,y)..Ju(z,y)] X [Ji(z,¥)..Ju(z,)
if ((t>1)&& (i > j))
ali){5] = 4[3](s];
}

It is worth noting that the data sent to any processor that is forced to participate are
discarded as soon as they arrive to free up the buffer space at the processor.

3.3 Computing the Inverse of a Reference Pattern

Synchronizing Group A primitives depends on computing the inverse of a reference pattern.
In case the inverse is not computable at compile-time, our current solution is to use a Group

15

B primitive instead. Such a primitive requires every member in a well-defined subset of
the network of processors (such as a column) to participate, including those who do not
really need the data. Since every processor is able to identify its position in the network,
synchronization can be easily achieved in this case.

However, this simple solution may incur high performance cost in some cases. For
example, suppose the reference pattern (over domain D = [1..n] x [1..n])

"a@(2,5) = (c(3,7),5)"

contains an indirect reference c(z,j) whose value cannot be determined at compile-time.
Our pattern matching algorithm would match it with a Spread, but a Copy would suffice
if ¢(z,j) was known to be constant at compile-time.

Asynchronous Communication One alternative approach is to generate a Request-Receive
pair which interrupts the processor holding the requested value. The target program looks
like

Program for processor p :

if (1 =2) {
(Send a request to processor idx_to_pid(c(z,;),7));
(Wait for an answer from processor idx_to_pid(c(¢,7),7));

}

The Request-Receive pair works as follows: Whenever there is a request coming to a pro-
cessor, an interrupt handler will send out the requested data if it is ready, otherwise it
will queue the request and send out the value when it becomes available. The overhead of
interrupt handling and queue management may be reduced if a separate communication
co-processor is available in the hardware. In practice, message granularity in this approach
is fine enough so that it incurs unacceptably high overhead on machines like the iPSC/2.
In addition, asynchronous communication makes this approach far more error-prone. A
working mechanism for asynchronous communication on this class of machines may incur
additional system overhead.

User Directives Another alternative is to allow the user to provide enough information
to generate efficient communication. It turns out that all that is needed is a pair of
functions which are inverses of each other for specifying the sender’s form and the receiver’s
form of a given reference pattern. Using the same example shown above, the user can say

Communication Forms:
T(3,5) = (c(i,5),3) = {(¢ div 4, 5)}
Tanv(i, j) = if (2 <= (n div 7))
= {(k,j)|i*xj<=k<min(n+1,(:+1)*3)};

16

The inverse T_inv can then be used to generate a send-receive pair for eficient communi-
cation. The corresponding target code will look like

Program for processor p :
if (i = 2)
(Send msg to processor idx_to_pid(T'(,7))});
if (p € {idx-to_pid(T<nv(i,7))})
(Receive msg from processor idx_to_pid(2, 7));

We think this approach is the best and we will support this in the future.

4 Scheduling Communication Primitives

In this section, we consider the problem of the location where a communication primitive
should appear in the target program. We first introduce the notions of mazrimum granu-
larity, computation segment and communication segment. We then define communication
window, specifying the range in which a communication primitive can legally appear. We
then discuss the various trade-offs in choosing the best placement for a call to the commu-
nication routine.

4.1 Computation Segments

Assume that all the loop nests in a partitioned shared-memory program are in the canonical
form as defined in Section 2. Given an n-level loop nest defined over domain D = D; x
Dy --- x D,, then the first k levels are for loops while the inner loops from level k + 1
to n are forall loops. For the purpose of our discussion, we assume, in addition, that the
inner forall loops are distributed over the array assignment statements in the body of the
loop nest. Such loop distribution will not be done actually to generate the target code,
in other words, we perform loop distribution over the array assignment statements now
and then perform the inverse operation after we have determined the placement of the
communication calls.

We use the following notation
S(a, E, il, ceey lk)

to denote the inner loop nest from level k + 1 to n over an assignment statement of array
a and call it a computation segment for a, where E = Dyyy X --- X Dy, and (4y,...,%) are
the index tuple of the first k for loops. An instance of (2;,...,%) is called a time-stamp of
a computation segment. An example is shown in Table 3.

Since the iterations of forall in a computation segment are fully independent, no com-
munication has to occur inside each computation segment if the data it needs are fetched
before it begins execution. However, between two different computation segments, there
might be data dependences, hence communication might be needed. Thus a computation
segment represents maximal granularity of the loop nest under consideration.

17

Comp. Segment Original Code
torall ((z,7) : Dy x Ds)
b(i,5,t)=if(j=t) >

‘ “(& Y {4+ fali,z, 0~ 1) [1 2 <),
else — 1:

forall ((z,7) : D2 x D3)

a(z,7,t) =if (t=0) - 0;

else if (¢ = b(0,t,t)) — a(t,j,t —1);
else — b(z,t,1);

S(a, E\¢)

Table 3: Computation segments for the example program

Comm. Segment | Corresponding Code

Cla, P, E,t—1) " ;eglce(Eﬂ,t,a,i);
C(b, P, E, 1) f{ ¢ gn(ZAII-BroadcastﬁE, (0,t),a);
P By |1 S>p—r0e)ad(E,2,t,b);

Table 4: Communication segments for the example program

4.2 Communication Segment

Communication in a partitioned program can be represented in a similar way. Recall
that in the canonical form of a partitioned shared memory program, the first k¥ domain
coordinates are temporal. Given a reference pattern

P: fa(in,... tn) & b(61y...,80) s T

where £ = Diyq X -+- X Dy, and (4y,...,6k) is the time-stamp of the segment. We use
the following notation

C(b, P, E,&y,...,6)

to denote the communication segment generated for P, including the calls to primitive
routines, statements for loading message buffers, etc.. An example of communication
segments is given in Table 4. For simplicity, we will leave out the code for the usual
housekeeping activities before and after the call to the communication routines.

Granularity of Segments Consider the case where a processor computes some values
and then sends them to other processors. The processor can either compute and send
one value at a time or it can compute many values first and then send. The difference is
the memory usage (data need to be stored if they don’t get sent) and the communication

18

overhead (more frequent, small messages incur more fixed cost such as message startup time
and time for the calls to the operating system kernel. With respect to the above example,
the inner loop nests can all be broken down to smaller segments. For instance, the following
three loop nests are possible decompositions of computation segment S(b, E, t):

forall (i € D,) forall (j € Ds) forall ((i,5) € Dy x D3)
S(b, D, t,1); S(b, Da, t,1); S(b, nil, t,4,7);

Segments S(b, Ds,t,1), S(b, Da,t,1), and S(b,nil,t,7,) are all of smaller granularity than
S(b, E, t).

Selecting appropriate granularity of computation segments and consequently the size
and frequency of message-passing requires cost-driven optimization based on both the tar-
get machine parameters and cost estimation of the program. The formulation here provides
the framework for doing so. In what follows, we present our method using computation
segments and communication segments both at their aximum granularity. The opti-
mization issue can be addressed separately and the following method works for any given
granularity.

4.3 Scheduling Communication Segments

The main issue of scheduling is to place a communication segment in the appropriate
location in a sequence of computation segments. The potential locations for communication
segments are points between the computation segments. However, not every such point
is legal. A communication should happen no earlier than the time when the transmitted
data is ready and no later than the time when the transmitted data is used. We define
the notion of a communication window specifying the range in which a communication
segment must be placed and can be placed anywhere legally.

Communication Window Given a communication segment, C(b, P, E, 61,...,6k), the
top of the window is the point immediately after the last of the set of computation seg-
ments including S(b, E, é;,...,8,) and those which compute the indirect array references
occurring in "8;,...,6," The bottom of the window is the point immediately before the
earliest of the set of computation segments in which a(zq,...,1,) is used.

For instance, given reference pattern
P: fa(i,j,t) « b(i, c(i,j,t),t — 1)

the top of the communication window for communication segment C(b, P, E,t — 1) is the
point immediately after computation segments S(b, E,t —1) and S(c, E,t). Since the time-
stamp of S(¢, E,t) is newer, the top is the point right after it.

For the communication segments in Table 4, the compiler would derive the following
communication windows:

19

for (t : Dy) { for (t: Dy) {

S(b, E, t); C(a, P, E,t —1);
C(b, o, E,) S(b, B, 1),

C(b, Py, E, t); C(b, Py, E\t);
S(a, E,t); C(b, Py, E\ t);
C(a, A, E,t); S(a, E,t);

} }

(a) Simple strategy 1 (b) Simple strategy 2

Figure 5: A partitioned program with explicit communication

Comm. Segment | Communication Window
Cle,P,E;t —1) | S(a,E,t —1) S(b,E,t)
C(b, P, E,t) S(b, E,t) S(a, E,t)
C(b, Py, EL 1) S(b, E, t) S(a, E,)

A communication window specifies the range within which a communication segment
can be inserted between any two computation segments. Notice that a communication
window may cross loop iterations, which is the consequence of cross-iteration dependencies.

Issues of Scheduling Given a communication window, what is the best placement
of a communication segment? Again, this problem involves trade-offs in communication
cost, storage use, balanced network flow, etc., and needs to be answered by cost-driven
optimizations based on a model of target machine characteristics. We describe a scenario
here to illustrate the trade-off between processor idling time versus network message traffic.

A processor waiting for a message cannot progress with its own program unless the
message 1s received. So the earlier the message is sent out by the processor which produces
the required data, the better. On the other hand, if the production and consumption of the
messages are too much off-balance, messages may start to saturate the network. Profiling
and estimating computation tinie, message size, etc., should provide clues for where the
communication segment should be placed to maintain a smooth flow of message traffic.

Consequently, we want to put communication segments in places where message ag-
gregation can be performed. However, larger messages also mean larger buffers. For large
applications, this could cause a shortage of memory. Again, to balance the issue, cost
estimation and profiling are needed.

Simple Strategies Here we propose two very simple default strategies which do not
take cost into consideration:

20

1. Place a communication segment at the top of its communication window.

2. Place a communication segment at the top of its communication window if the top
is a computation segment with the same time-stamp; otherwise place it immediately
before the first computation segment in the window that has the same time-stamp

Using the first strategy on the program shown in Figure 4, we obtain a schedule shown
in Figure 5(a); using the second strategy, the result is shown in Figure 5(b).

The first strategy has an advantage in controlling granularity, since a strip-mining can
be applied to a computation segment and the adjacent communication segments, while
the second strategy is slightly easier to generate code for, since there are no cross-iteration
dependencies between computation segments and communication segments.

5 Correctness of Communication Synthesis

One important issue in generating communication is to guarantee that no deadlock is
introduced by the compiler. We prove this property of our message generation procedure
as follows:

The target code generated by the compiler consists of a host program and a node
program. The single node program is in the so-called SPMD (single program multiple data)
style. As we discussed in the previous secti»n, the node program consists of a sequence
of perfectly nested loop nests, each with a sequence of computation and communication
segments as its loop body.

Assume that each computation segment is a single-entry single-exit segment (i.e. there
are no goto or break statements), and is generated by the compiler based on semantics-
preserving transformations which do not introduce deadlock. Provided that the source
program is correct and all the data a computation segment requires are available, then its
execution always terminates. Therefore, we only need to check the behavior of commu-
nication segments which ensure the availability of the data required by the computation
segments.

We prove that for each loop nest, the communication segments so generated do not
introduce deadlocks by induction on the sequence of communication segments.

The induction hypothesis is that up to the N — 1'th communication segment, the pro-
gram is deadlock-free, i.e., all processors have reached the beginning of the Nth commu-
nication segment since any computation segments in between them terminates eventually.
Case 1: The communication segment consists of a group A communication primitive.
Since such a communication primitive is guarded only by space-invariant predicates, all
processors will execute the primitive. Since the communication primitive is assumed to
terminate, the entire segment terminates.

Case 2: The communication segment consists of a group B communication primitive. We
assume that the message buffer is large enough to hold the entire data transmitted in

21

a message 3. (1) Since the send and receive pair of the primitive is arranged as a non-
blocking send followed by a blocking receive (Section 3.1), every processor will execute a
send statement first. (2) Due to the assumption on the buffer size, no deadlock due to
buffer overflow will occur; therefore every processor entering the communication segment
will eventually finish executing the send statement, and move on to the receive statement.
(3) Since the predicates for the send and receive statements are arranged in such a way
that for every message sent out to the network, there is a receiving statement matching
it (Section 3.2), every receive statement will terminate with received data. Therefore, the
Nth communication segment eventually terminates, and so the program also terminates.

6 Concluding Remark

In this paper we considered generating a program with explicit communication commands
from a program for shared-memory multiprocessors based on a set of standard data par-
tition strategies. In particular, we discussed the problem of coordinating interprocessor
communication. The communication synthesis approach has been implemented in the
experimental Crystal compiler for the iPSC/2 and the NCUBE [9]. The compiler takes
a Crystal program as input and generates C code with calls to communication primi-
tives as output. All the communication primitives discussed in this paper, except for
Affine-Transform, have been implemented on the iPSC/2. The preliminary results we have
obtained on a few benchmark programs, including matrix multiplication (3], Gaussian
elimination with partial pivoting [4], and a financial application {2], have shown that the
performance of the compiler-generated code is within a factor of 1.7 - 2.8 of that of the
their corresponding hand-crafted code.

When measured independently, an individual aggregate communication routine is far
more efficient than corresponding send and receive pairs with the current generation of
hypercube multiprocessors. As the design of communication network advances, however,
the cost function may change over time.

As shown by Chuck Seitz, the communication system of the Mosaic system has ex-
tremely low latency for send and receive commands. In addition, the so called worm-hole
style routing makes the communication done directly by the router much niore competi-
tive than user-programmed multi-phase routines due to their need to access the processor
memory. One interesting architectural design question is whether the functionality of the
routing system should be broadened to do special aggregate communication, taking ad-
vantage of the highly correlated communication patterns and the smart algorithms to do
them.

3This assumption can be relaxed if we take buffer size into consideration when generating
communication.

22

References

(1] David Callahan and Ken Kennedy. Compiling programs for distributed-memory mul-
tiprocessors. The Journal of Supercomputing, 2(2):151-170, 1988.

[2] Marina Chen, Young-il Cl 20, Erik DeBenedictis, Jingke Li, and Janet Wu. Speedup
of a financial application using the crystal compiler for hypercubes. Technical Report
YALEU/DCS/TR-673, Dept. of Computer Science, Yale University, January 1989.

[3] Marina Chen, Young-il Choo, and Jingke Li. Compiling parallel programs by opti-
mizing performance. The Jou.nal of Supercomputing, 1(2):171-207, July 1988.

4] Marina Chen, Young-il Choo, and Jingke Li. Theory and pragmatics of compiling
efficient parallel code. Technical Report YALEU/DCS/TR-760, Dept. of Computer
Science, Yale University, December 1989.

[5] G.Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems
on Concurrent Processors. Prentice Hall, 1988.

[6] Ching-Tien Ho. Optimal Communication Primitives and Graph Embeddings on Hy-
percubes. PhD thesis, Yale University, 1990.

(7] S. Lennart Johnsson. Communication efficient basic linear algebra computations on
hypercube architectures. J. Parallel and Distributed Computation, 4(2), April 1987.

[8] C. Koelbel and P. Mehrotra. Compiler transformations for non-shared memory ma-
chines. In 4th International Conference on Supercomputing, May 1989.

9] Jingke Li. Compiling Crystal for Hypercube Machines. PhD thesis, Yale University,
g
(Expected Dec. 1990).

[10] Jingke Li and Marina Chen. Generating explicit communication from shared-memory
program references. In Supercomputing 90, New York, NY, Nov. 1990.

(11] Jingke Li and Marina Chen. Index domain alignment: Minimizing cost of cross-
reference between distributed arrays. In Proceedings of the 8rd Symposium on the
Frontiers of Massively Computation, College Park, Maryland, Oct. 1990.

[12] Michael J. Quinn, Philip J. Hatcher, and J.V. Rosendale. Compiling C* programs
for a hypercube multicomputer. In ACM/SIGPLAN PPEALS 1988, New Haven,
Connecticut, July 1988.

[13) A. Ramanujan and P. Sadayappan. A methodology for parallelizing programs for
complex memory multiprocessors. In Supercomputing 89, Reno, Nevada, Nov. 1989.

[14] A. Rogers and K. Pingali. Process decomposition through locality of reference. In SIG-
PLAN’89 Conference on Programming Language Design and Implementation, June
1989.

23

[15] Matthew Rosing and Robert B. Schnabel. An overview of DINO - a new language
for numerical computation on distributed memory multiprocessors. Technical Report
CU-CS-385-88, University of Colorado, March 1988.

(16] M.J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cam-
bridge, MA, 1989.

[17] Hans P. Zima, Heinz J. Bast, and Michael Gerndt. Superb: A tool for semi-automatic
SIMD/MIMD parallelization. Parallel Computing, 6:1-18, 1988.

24

